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Abstract

The non-linear dynamic behavior of a rotor–bearing system is analyzed based on a continuum model.
The finite element method is adopted in the analysis. Emphasis is given on the so-called ‘‘oil whip
phenomena’’ which might lead to the failure of the rotor system. The dynamic response of the system in an
unbalanced condition is approached by the direct integration method and mode superposition method. It is
found that a typical ‘‘oil whip phenomenon’’ is successfully produced. Furthermore, the bifurcation
behavior of the oil whip phenomenon that is much concerned by present non-linear dynamics is analyzed.
The rotor–bearing system is also examined by the simple discrete model. Significant differences are found
between these two models. It is suggested that a careful examination should be made in modelling such non-
linear dynamic behavior of the rotor system.
r 2003 Elsevier Ltd. All rights reserved.

0. Introduction

Oil whip is a kind of self-exciting vibration of a rotor–bearing system and has brought about
several destroying accidents in turbine generators since the 1970s [1]. Many studies have been
conducted on oil whip by linear dynamics, but they cannot explain the phenomenon well.
Presently, many efforts have been taken try to analyze the bifurcation behavior of oil whip by
non-linear dynamics. But because the oil whip is difficult to produce by a non-linear mathematical
model, the oil whip still cannot be explained by a non-linear dynamics phenomenon.
Rotor assembly is a complicated system. An accurate model may take into account many

factors, such as mass, moment inertia, inner damping, bending and torsion vibration coupling
effects, the non-linear factors of oil film bearing, and so on. In most studies, however, the
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non-linear dynamic behavior of rotor–bearing system was mainly approached by a simple discrete
model [2,3]. The model has only very limited degrees of freedom and the influence of many factors
(as mentioned above) was neglected. Such kinds of models may be adequate in determining the
overall stable behavior of rotor systems. However, they might not be able to describe the complex
non-linear dynamic behaviors after bifurcation. More elaborate models, such as continuum
models, are therefore expected to provide better results. In the present study, a continuum model
of rotor–bearing system is analyzed by the finite element method and the non-linear oil film force
is taken into account. The non-linear dynamic behavior of the system is examined in detail and a
typical ‘‘oil whip phenomenon’’ is produced. The results are then compared with the simple
discrete model. It is found that there exists a significant difference between these two models. In
fact, the ‘‘oil whip phenomenon’’ could hardly be reproduced by the simple discrete model, at
least in the case of the present study. Therefore a careful examination is needed in modelling the
non-linear dynamic behavior of the rotor system.

1. Model of non-linear rotor–bearing system

Consider a simple one-disk symmetric flexible rotor supported by two oil-lubricating bearings,
as shown in Fig. 1. The dynamic behavior of the rotor is approached by the finite element method.
The total rotor is divided into eight beam elements, and nine nodes; every node has four degrees of
freedom including two rotating and two translation freedom. The masses of the disk and the
bearing are treated as a lumped mass and are superimposed upon the corresponding nodes.
The support of bearings is treated as a non-linear oil-film force applied to the ends of the rotor.
The total finite element model is shown in Fig. 2.
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Fig. 1. A symmetric rotor–bearing system.

Fig. 2. Finite element model of the rotor–bearing system.
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The oil-film force is obtained from short bearing theory and it can be expressed as [4,5]

fx

fy

( )
¼ �

½ðx � 2 ’yÞ2 þ ðy þ 2 ’xÞ2�1=2

1� x2 � y2
3xV ðx; y; aÞ � sin aGðx; y; aÞ � 2 cos aSðx; y; aÞ

3yV ðx; y; aÞ þ cos aGðx; y; aÞ � 2 sin aSðx; y; aÞ

( )
; ð1Þ

where x and y are planar co-ordinates of the axial center. The superposed dot denotes the time
derivative of the variable:
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2. Integration method

Considering the non-linear lubricating force, the FEA dynamics equation of a non-linear
rotor–bearing system can be expressed as

M .q þ D ’q þ Kq ¼ Rð ’q; q;o; tÞ; ð6Þ

q1 ¼ ½x1; yx1;y; xn; yxn�T; q2 ¼ ½y1; yy1;y; yn; yyn�;
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In Eq. (6), when the rotating speed changes, the eccentricity force will also change. Therefore,
the responses of the rotor and the lubricating force will adjust to balance the eccentricity force.
Changing o; the non-linear responses of the rotor at different rotating speeds will be obtained.
Nowadays, Direct Integration method and Mode Superposition method are mainly used to

solve Eqs. (6). Although Mode Superposition method has the advantage of saving calculation
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time, it may not be able to obtain accurate results when some modes are reduced. The Mode
Superposition method is approached as follows:
From the vibration equation of the system without damping

½M�f .qg þ ½K�fqg ¼ 0: ð7Þ

The generalized eigenvalue problem can be obtained as

½K �ffg ¼ o2½M�ffg: ð8Þ

Solving Eq. (8), the m ðmpnÞ pairs of eigenvalues ðo2
1; ff1gÞ; ðo

2
2; ff2gÞ;y; ðo2

m; ffmgÞ can be
obtained. These eigenvectors ffig ði ¼ 1; 2;y;mÞ are orthogonal for ½M�; i.e.

ffig
T½M�ffjg ¼

1; i ¼ j;

0; iaj:

(
ð9Þ

ffig is called the ith mode vector, oi is the corresponding frequency of the mode.
For the eigenvector matrix ½F� of Eq. (8) it can be deduced that

½K �½F� ¼ ½M�½F�½O�2 ð10Þ

and ½F� ¼ ½ff1gff2g?ffmg�; ½O�
2 ¼ diagðo2

1;o
2
2;y;o2

mÞ
Due to

½F�T½K �½F� ¼ ðdiag½O�Þ2; ð11Þ

½F�T½M�½F� ¼ ½I �: ð12Þ

Apparently, eigenvector matrix ½F� is a good transform matrix, and it can transform the ½K � and
½M� into diagonal matrices with minimum bandwidth.
Therefore, it can be deduced that

fqg ¼ ½F�f %Xg ð13Þ

by substituting Eq. (13) into Eq. (6), it can be deduced

f .%XðtÞg þ ½ %D�f ’%XðtÞg þ ½O�2f %XðtÞg ¼ f %RðTÞg: ð14Þ

For an overall response, all the solutions of Eq. (14) must be calculated, and superpose the
responses of every mode to obtain the displacements of the finite element nodes, i.e.

fqðtÞg ¼
Xm

i¼1

ffigziðtÞ: ð15Þ

ffig is ith mode vector, ziðtÞ is the general displacement and Eq. (15) is called the Mode
Superposition method.
When the number of selected modes is less than the rank number of the nodes’ displacement

vector, the calculation of Eqs. (8) and (15) will be reduced. However, it is difficult to select a
proper m for maintaining a good precision and also enhancing the solving efficiency.
There are three kinds of widely used Direct Integration methods, Center-Difference , Wilson-y

and Newmark method. Due to the fact that the Center-Difference method becomes stable only
when some conditions are satisfied and the interval of solving time is difficult to choose, its
application is restricted. Although the consumption of the calculation time for the Wilson-y
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and Newmark method are almost the same, the Newmark method has a higher accuracy than
Wilson-y [6]. Therefore, the Newmark method is adopted in solving the non-linear problem. The
difference format of Newmark is

f ’qtþDtg ¼ f ’qtg þ ½ð1� dÞf .qtg þ df .qtþDtg�Dt; ð16Þ

fqtþDtg ¼ fqtg þ f ’qtgDt þ
1

2
� a

� �
f .qtg þ af .qtþDtg

� �
Dt2: ð17Þ

The parameters a and d; are determined in terms of the precision and stability requirements of the
integration. As d ¼ 1

2
; a ¼ 1

6
; this method is correspondent to a Linear Acceleration method.

Considering the dynamics equation at t þ Dt

½M�f .qtþDtg þ ½D�f ’qtþDtg þ ½K �fqtþjDtg ¼ fRtþDtg: ð18Þ

Via Eq. (17), the f .qtþDtg can be calculated by fqtþDtg; then substitute f .qtþDtg into Eq. (16), and the
equations of f .qtþDtg and f ’qtþDtg only written in fqtþDtg can be obtained. Substituting these two
equations of f ’qtþDtg and f .qtþDtg into Eq. (18), the fqtþDtg can be calculated. Using Eqs. (16) and
(17), f ’qtþDtg and f .qtþDtg can be obtained. The final equations are as follows:
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f .qtþDtg ¼
1

aDt2
ðfqtþDtg � fqtgÞ �

1

aDt
f ’qtg �

1

2a
� 1

� �
f .qtg; ð20Þ

f ’qtþDtg ¼ f ’qtg þ ð1� dÞDtf .qtg þ dDtf .qtþDtg: ð21Þ

The above deduced process shows that
(1) The Newmark method is an implicit integration method.
(2) For the Newmark method, a special initial condition is not required, as the displacements,

velocities and accelerations at t þ Dt are calculated only by the variables at t:
(3) It can be demonstrated that as dX0:5 and aX0:25 ðdþ 0:5Þ2; the integration is absolutely

stable. d ¼ 0:5 and a ¼ 0:25 is often adopted.
(4) As the Newmark method is absolutely stable, it can be free of the trouble of choosing the

time interval Dt: Due to the fact that equations must be calculated in every step, the Newmark
method is more expensive than the Center-Difference method.
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3. Numerical analysis and comparison of the non-linear dynamics of the rotor

For the mathematical model in Section 2, the parameters of the rotor and the bearing are
chosen as M1 ¼ 374 kg; M2 ¼ 27 kg; m ¼ 18� 10�3 Pa s; R ¼ 57 mm; L ¼ 28:5 mm; c ¼ 0:2 mm;
D1 ¼ 3:0� 103 N s=m; and the eccentricity of the rotor is r ¼ 0:1: In this section, the vibrational
responses of the rotor in the speed-ascending process are studied and the cascade spectrum of the
rotor vibrational response is given in Fig. 3. The overall bifurcation map is given in Fig. 4. All the
above vibrational responses are calculated by the Newmark method.
The cascade spectrum of the vibrational response of the rotor exhibits the following dynamic

phenomena.

(1) When the shaft rotates with a low rotating speed, there are only the synchronous (one per one
rotation) vibrations with minor amplitudes (see Fig. 3). These vibrations are caused by the
inertia forces of unbalance of the rotor.

(2) At higher rotation speeds, the forced synchronous vibration is not the only regime of motion.
Along with synchronous vibrations, Oil Whirl appears (see Fig. 3). Oil whirl is the rotor
lateral forward precessional subharmonic vibration around the bearing center. The
amplitudes of oil whirl are much higher than those of synchronous vibrations;

(3) When the increasing rotation reaches the first balance resonance, i.e., the first natural
frequency of the rotor, the oil whirl suddenly disappears.

(4) When the rotation speed approaches double the value of the rotor first balance resonance, the
half-speed oil whirl frequency reaches the value of the first balance resonance—the first
natural frequency of the rotor. The oil whirl pattern becomes replaced by Oil Whip—a lateral
forward precessional subharmonic vibration of the rotor. Oil whip has a constant frequency:
independent of the rotation speed increase, the oil whip frequency remains close to the first
natural frequency of the rotor, and the amplitudes of oil whip are much higher than those of
synchronous vibrations and oil whirl.
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Fig. 3. Cascade spectrum of the vibrational responses of the rotor.
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In order to demonstrate the oil whip phenomenon, the vibrational responses of the rotor system
in the speed-descending process are also calculated. The amplitudes of the rotor in the speed-
descending and speed-ascending processes are given in Fig. 5. The results show that in the speed-
descending process, the oil whip does not disappear just at the point where it took place in the
speed-ascending process until the speed descends to a lower speed. This is a typical characteristic
of oil whip [7,8].
The bifurcation map of the rotor response shows that when the rotation speed reaches about

o ¼ 500 rad=s; a typical period-doubling bifurcation takes place, and then the responses become
synchronous vibration. When the rotation speed reaches near o ¼ 900 rad=s; the vibrations
become quasi-period bifurcation. Therefore, the oil whirl and oil whip process is a typical
Hopf bifurcation with hysteresis [9,10]. This result is very useful in the non-linear design of
rotor–bearing system. The vibrational responses of rotor at several rotating speeds are also given
in Figs. 6–8.
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Fig. 4. Bifurcation behaviour of the rotor: (a) Bifurcation of x-response of shaft center at bearing. (b) Bifurcation of

y-response of shaft center at bearing.
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In order to check the difference between the Mode Superstition method and Direct Integration
method, the dynamic responses of the rotor at the speed of o ¼ 600 rad=s are studied by
these two methods, respectively, and the trajectories of the rotor are shown in Fig. 9. The
trajectories of the rotor from the two methods show that the reduction of modes will bring about
error in the solution and the more the modes are reduced, the more the error is brought in. In the
calculation process, we also find that the solution of the oil-film force is apt to overflow due to the
error from the mode reduction. The results show that the Direct Integration method is more
effective and practical than the Superstition method in the calculation of the non-linear dynamic
response.
At present, the non-linear dynamic behaviors of such kinds of rotors are mostly calculated by a

simple discrete method. In order to study the differences of the solution between these two
methods, the non-linear vibrational responses of the rotor (shown in Fig. 1) are calculated by
the discrete method. The total rotor–bearing system is simplified into three mass points and the
masses of the shaft are contributed to these three points. The stiffness of the two segments of the
rotor is equivalent to kp:
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Fig. 5. Amplitudes of the rotor in the speed ascending and descending process: (a) Amplitudes of the rotor in the speed

ascending process. (b) Amplitudes of the rotor in the speed descending process.
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Fig. 9. Comparison of the results of Newmark and Mode Superposition scheme ðo ¼ 600 rad=sÞ:

Fig. 10. Discrete mathematical model of the rotor.
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The damping of the disk is D1; and the lubricating force is loaded on the mass points
corresponding to the bearings. The mathematical model is shown in Fig. 10, and the dynamic
equations of the model are expressed as

.x2 ¼ �
k

m2
ðx2 � x1Þ þ

1

m22
fx;

.y2 ¼ �
k

m2
ðy2 � y1Þ þ

1

m22
fy � G;

.x1 ¼ �
a

m1
’x1 �

2k

m1
ðx1 � x2Þ þ r cos t;

.y1 ¼ �
a

m1
’y1 �

2k

m1
ðy1 � y2Þ þ r sin t� G:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð22Þ

The parameters of the rotor are m1 ¼ 420 kg; m2 ¼ 50 kg; 2kp ¼ 2:105e þ 8 N=m; D1 ¼
3:0� 103 N s=m: The parameters of the lubrication bearing are the same as those in the finite
element model. By employing the Runge–Kutta scheme, the bifurcation behaviors of the rotor at
the eccentricity of r ¼ 0:1 are calculated and shown in Fig. 11. The bifurcation behaviors are quite
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Fig. 11. Bifurcation behaviour of the rotor responses from Discrete model: (a) Bifurcation of x-response of shaft center

at bearing. (b) Bifurcation of y-response of shaft center at bearing.
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different from those from the finite element method. Due to the neglect of the effects of mass
distribution and other inner non-linear factors, the solutions from the simple discrete method will
deflect from the facts of the continuum rotor–bearing systems’ non-linear vibrations.

4. Conclusions

In this paper, a continuum rotor–bearing system is modelled by finite element and the
vibrational responses are calculated by employing Newmark and Mode Superposition schemes.
The results are also compared with those from the discrete method, and the conclusions drawn
from the study can be summarized as follows:

(1) The comparison of the results from the Newmark and Mode Superposition method shows
that the mode reduction will bring about error in the solution of rotor’s non-linear vibrational
responses. The more the modes are reduced, the more the error occurs. In the calculation
process, we also find that the solution of the oil-film force is apt to overflow due to the error
from the mode reduction. The results show that the Direct Integration method is more
accurate and practical than the Superstition method in the calculation of the non-linear
dynamic response.

(2) Due to the neglect of the effects of mass distribution and other inner non-linear factors, the
solutions from simple discrete method will deflect from the facts of the continuous rotor–
bearing system’s non-linear vibration. It cannot describe the non-linear vibrational behavior
of a continuous rotor system correctly. While, the finite element method can take into account
the effects of multi factors, the results from the finite element method will be more accurate
than those from the simple discrete method.

(4) The vibrational responses of the rotor in the present study show that Oil Whirl and Oil Whip
may take place in the speed descending process, and from the view of non-linear dynamics, it
is a Hopf bifurcation, and they should be avoided in the design of this kind of rotor.
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Appendix. Nomenclature

M general mass matrix
m component mass matrix
D damping matrix
K stiff matrix
Rf g load tensor
.qf g acceleration tensor
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’qf g velocity tensor
qf g displacement tensor

M1 mass of disk
M2 mass of bearing
D1 damping coefficient of disk
d sommerfeld modifying parameter ðd ¼ moRLðR=cÞ2ðL=2RÞ2Þ
m viscosity of lubricating oil
c clearance of bearing radius
L length of bearing
R radius of bearing
Fx lubricating force in x direction ðFx ¼ fx � dÞ
Fy lubricating force in y direction ðFy ¼ fy � dÞ
fx dimensionless lubricating force in x direction
fy dimensionless lubricating force in y direction
o rotating speed of rotor
t time
X displacement in x direction
Y displacement in y direction
x dimensionless displacement in x direction ðx ¼ X=cÞ
y dimensionless displacement in y direction ðy ¼ Y=cÞ
’x dimensionless velocity in x direction
’y dimensionless velocity in y direction
.x dimensionless acceleration in x direction
.y dimensionless acceleration in y direction
G dimensionless weight ðG ¼ g=co2Þ
t dimensionless time ðt ¼ otÞ
e eccentricity of rotor
r dimensionless eccentricity of rotor
m1 lumped mass of bearing and part of shaft section
m2 lumped mass of disk and part of shaft section
kp effective stiffness of half shaft
k modified stiffness ðk ¼ kp=o2Þ
a modified damping ða ¼ D1=oÞ
m22 modified mass ðm22 ¼ m2o2c=dÞ
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